Skip to main navigation menu Skip to main content Skip to site footer

Embracing New Translation Technologies at International Organizations: Translators’ Perceptions of Machine Translation and its Impact on Institutional Translation

Abstract

This study presents the results of a large-scale survey of institutional translation professionals on the distinctive features of post-editing (as compared to revision in particular), the main issues found in neural machine translation (NMT) and the impact of its use on translation processes, products and competences. The quantitative and qualitative findings illustrate the diversification of tools and inputs in current translation workflows, the risks and efforts associated with NMT, and the reinforced need for solid translation competence and subject matter knowledge to ensure translation quality. The (mostly limited) variations found between institutions and translators’ experience levels are also discussed. The evidence gathered supports a revised concept of translation that considers an increasingly hybrid and dynamic mix of translational actions in augmented translation environments. In turn, these results highlight the persistent relevance of translation expertise and specialized translator training, and contribute to nuancing our understanding of the implications of NMT for professional translation, beyond institutional settings.

Cite as: Prieto Ramos, JLL 14 (2025), 1–29, DOI: 10.14762/jll.2025.001

Keywords

neural machine translation, post-editing, revision, institutional translation, international organizations , translator competence, augmented translation, translation process, translation quality

PDF

References

  1. Arnejšek, Mateja & Unk, Alenka (2020). Multidimensional assessment of the eTranslation output for English–Slovene. In Martins et al. (Eds.), Proceedings of the 22nd Annual Conference of the European Association for Machine Translation (pp. 383–392). Lisbon: European Association for Machine Translation.
  2. Cadwell, Patrick; Castilho, Shela; O’Brien, Sharon & Mitchell, Linda (2016). Human factors in machine translation and post-editing among institutional translators. Perspectives, 26(3), 301–321. DOI: 10.1075/ts.5.2.04cad.
  3. Daems, Joke & Macken, Lieve (2021). Post-editing human translations and revising machine translations: impact on efficiency and quality. In Koponen, Mossop, Robert & Scocchera (Eds.), Translation Revision and Post-Editing: Industry Practices and Cognitive Processes (pp. 50–70). Abingdon: Routledge.
  4. Do Carmo, Félix & Moorkens, Joss (2021). Differentiating editing, post-editing and revision. In Koponen, Mossop, Robert & Scocchera (Eds.), Translation Revision and Post-Editing: Industry Practices and Cognitive Processes (pp. 35–49). Abingdon: Routledge.
  5. Farrell, Michael (2018). Machine translation markers in post-edited machine translation output. In Chambers et al. (Eds.), Proceedings of the 40th Conference Translating and the Computer (pp. 50–59). London: Asling.
  6. Guzmán, Diego & Prieto Ramos, Fernando (2024). Human and machine translation of legal terminology in international institutional settings: A case study. De Europa - European and Global Studies Journal, special issue, 61–81.
  7. Herbig, Nico; Pal, Santanu; Vela, Mihaela; Krüger, Antonio & van Genabith, Josef (2019). Multi-modal indicators for estimating perceived cognitive load in postediting of machine translation. Machine Translation, 33(1), 91–115. DOI: 10.1007/s10590-019-09227-8.
  8. Holz-Mänttäri, Justa (1984). Translatorisches Handeln: Theorie und Methode [Translational Action: Theory and Method.]. Helsinki: Suomalainen Tiedeakatemia.
  9. Jiang, Yue & Niu, Jiang (2022). A corpus-based search for machine translationese in terms of discourse coherence. Across Languages and Cultures, 23(2), 148–166. DOI: 10.1556/084.2022.00182.
  10. Koehn, Philipp & Knowles, Rebecca (2017). Six challenges for neural machine translation. In Luong et al. (Eds.), Proceedings of the First Workshop on Neural Machine Translation. Vancouver: Association for Computational Linguistics. DOI: 10.18653/v1/W17-3204.
  11. Konttinen, Kalle; Salmi, Leena & Koponen, Maarit (2021). Revision and post-editing competences in translator education. In Koponen, Mossop, Robert & Scocchera (Eds.), Translation Revision and Post-Editing: Industry Practices and Cognitive Processes (pp. 187–202). Abingdon: Routledge. DOI: 10.4324/9781003096962-15.
  12. Lafeber, Anne (2022). Skills and Knowledge Required of Translators in Institutional Settings. In Svoboda, Biel & Sosoni (Eds.), Institutional Translator Training (pp. 30–48). New York: Routledge. DOI: 10.4324/9781003225249-4.
  13. Lesznyák, Ágnes (2019). Hungarian translators’ perceptions of neural machine translation in the European Commission. In Forcada et al. (Eds.), Proceedings of MT Summit XVIII: Translator, Project and User Tracks (pp. 16–22). Dublin: European Association for Machine Translation.
  14. Lommel, Arle (2018). Augmented translation: A new approach to combining human and machine capa-bilities. In Cherry & Neubig (Eds.), Proceedings of the 13th Conference of the Association for Machine Trans-lation in the Americas (Volume 2: User Track) (pp. 5–12). Boston: AMTA.
  15. Macken, Lieve; Prou, Daniel & Tezcan, Arda (2020). Quantifying the effect of machine translation in a high-quality human translation production process. Informatics, 7(2). DOI: 10.3390/informatics7020012.
  16. Moorkens, Joss; O’Brien, Sharon; Da Silva, Igor; De Lima Fonseca, Norma & Alves, Fabio (2015). Corre-lations of perceived post-editing effort with measurements of actual effort. Machine Translation, 29(3), 267–284. DOI: 10.1007/s10590-015-9175-2.
  17. Moorkens, Joss; Toral, Antonio; Castilho, Sheila & Way, Andy (2018). Translators' perceptions of literary post-editing using statistical and neural machine translation. Translation Spaces, 7(2), 240–262. DOI: 10.1075/ts.18014.moo.
  18. Nitzke, Jean; Hansen-Schirra, Silvia & Canfora, Carmen (2019). Risk management and post-editing competence. The Journal of Specialised Translation, 31, 239–259.
  19. Olohan, Maeve (2021). Post-editing: a genealogical perspective on translation practice. In Bisiada (Ed.), Empirical Studies in Translation and Discourse (pp. 1–25). Berlin: Language Science Press. DOI: 10.5281/zenodo.4450077.
  20. Pasteur, Olivier (2013). Technology at the service of specialized translators at international organizations. In Borja Albi & Prieto Ramos (Eds.), Legal Translation in Context: Professional Issues and Prospects (pp. 283–297). Bern: Peter Lang.
  21. Pouget-Abadie, Jean et al. (2014). Overcoming the curse of sentence length for neural machine translation using automatic segmentation. In Proceedings of SSST-8 (pp. 78–85). Doha: Association for Computational Linguistics. DOI: 10.48550/arXiv.1409.1257.
  22. Prieto Ramos, Fernando (2015). Quality assurance in legal translation: evaluating process, competence and product in the pursuit of adequacy. International Journal for the Semiotics of Law, 28(1), 11–30.
  23. DOI: 10.1007/s11196-014-9390-9.
  24. Prieto Ramos, Fernando (2024a). Patterns of human-machine interaction in legal and institutional translation: from hype to fact. Polissema, 24, 1–27.
  25. Prieto Ramos, Fernando (2024b). Revisiting translator competence in the age of artificial intelligence: the case of legal and institutional translation. The Interpreter and Translator Trainer, 18(2), 148–173. DOI: 10.1080/1750399X.2024.2344942.
  26. Prieto Ramos, Fernando & Guzmán, Diego (2024). The impact of specialised translator training and professional experience on legal translation quality assurance: an empirical study of revision performance. The Interpreter and Translator Trainer, 18(2), 313–337. DOI: 10.1080/1750399X.2024.2344948.
  27. Pym, Anthony (2013). Translation skill-sets in a machine-translation age. Meta, 58(3), 487–503. DOI: 10.7202/1025047ar.
  28. Quinci, Carla (2023). Translation Competence: Theory, Research and Practice. Abingdon & New York: Routledge.
  29. Rico, Celia & Torrejón, Enrique (2012). Habilidades y perfil del nuevo rol del traductor como poseditor de traducción automática. Tradumàtica, 10, 166–178. DOI: 10.5565/rev/tradumatica.18.
  30. Robert, Isabelle S.; Remael, Aline & Ureel, Jim J. J. (2017). Towards a Model of Translation Revision Competence. The Interpreter and Translator Trainer, 11(1), 1–19. DOI: 10.1080/1750399X.2016.1198183.
  31. Robert, Isabelle S.; Schrijver, Iris & Ureel, Jim J. J. (2023). Comparing L2 translation, translation revi-sion, and post-editing competences in translation trainees: An exploratory study into Dutch–French translation. Babel, 69(1), 99–128. DOI: 10.1075/babel.00307.rob.
  32. Rossi, Caroline & Chevrot, Jean-Pierre (2019). Uses and perceptions of machine translation at the European Commission. The Journal of Specialised Translation, 31, 177–200.
  33. Sánchez-Gijón, Pilar; Moorkens, Joss & Way, Andy (2019). Post-editing neural machine translation versus translation memory segments. Machine Translation, 33, 31–59. DOI: 10.1007/s10590-019-09232-x.
  34. Scocchera, Giovanna (2017). La Revisione Della Traduzione Editoriale Dall’inglese All’italiano. Ricerca, Pro-fessione, Formazione. Rome: Aracne.
  35. Stefaniak, Karolina (2020). Evaluating the usefulness of neural machine translation for the Polish translators in the European Commission. In Martins et al. (Eds.), Proceedings of the 22nd Annual Conference of the European Association for Machine Translation (pp. 263–269). Lisbon: European Association for Machine Translation.
  36. Stefaniak, Karolina (2023). Machine translation and terminology: the experience of the European Commission. In Castilho, Caro Quintana, Stasimioti & Sosoni (Eds.), Proceedings of the New Trends in Translation and Technology Conference - NeTTT 2022 (pp. 134–141). Shoumen: Incoma.
  37. Strandvik, Ingemar (2020). Digital transformation and institutional translation – change and chal-lenges. In Della-Zuanna & Kurz (Eds.), Translation Quality in the Era of Digitalization (pp. 466–494). Berlin: Elanders GmbH.
  38. Teixeira, Carlos (2014). The Impact of Metadata on Translator Performance: How Translators Work with Translation Memories and Machine Translation. Doctoral thesis. Universitat Rovira i Virgili & Katholieke Universiteit Leuven.
  39. Toral, Antonio & Sánchez-Cartagena, Víctor (2017). A multifaceted evaluation of neural versus phrase-based machine translation for 9 language directions. In Lapata, Blunsom & Koller (Eds.), Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers (pp. 1063–1073). Valencia: Association for Computational Linguistics.
  40. Vanmassenhove, Eva; Shterionov, Dimitar & Gwilliam, Matthew (2021). Machine translationese: effects of algorithmic bias on linguistic complexity in machine translation. In Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume (pp. 2203–2213). Kyiv: Association for Computational Linguistics. DOI: 10.48550/arXiv.2102.00287.
  41. Vardaro, Jennifer; Schaeffer, Moritz & Hansen-Schirra, Silvia (2019). Translation Quality and Error Recognition in Professional Neural Machine Translation Post-Editing. Informatics, 6(3). DOI: 10.3390/informatics6030041.
  42. Vega Expósito, Miguel (2024). Análisis cuantitativo de traducciones del inglés al español poseditadas por traductores institucionales. Entreculturas, 14, 80–99. DOI: 10.24310/ertci.14.2024.17678.